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The simultaneous magnetic field penetration and electron heating in plasmas of nonuniform 
density and of azimuthal cylindrical symmetry are studied. The penetration is caused by both 
the convective skin effect and the pressure gradient. The shock penetration of the current layer 
into a cold unmagnetized plasma is shown to result in equal magnetic field energy and electron 
thermal energy. A direct relation is shown between the heating of an electron along its orbit 
and the deviation from the frozen-in law. General Hugoniot relations are presented for the 
shock penetration into warm magnetized plasmas. The profiles of the magnetic field and of the 
electron thermal energy are found in the steady skin layer that is formed in the case of no 
penetration. 

1. INTRODUCTION 

The penetration of a magnetic field into plasmas is an 
important process in the plasma evolution. Recently, a 
mechanism for magnetic field penetration, which results ei- 
ther from a density gradient or from a cylindrical geometry, 
has been explored.‘-5 This penetration is of much interest, 
since it is expected to occur for times (between the electron 
and the ion cyclotron periods) and for lengths (between the 
electron and the ion skin depths) that are characteristic of 
plasmas in certain pulsed-power devices. Indeed, the pene- 
tration of the magnetic field into the plasmas is crucial to the 
operation of the magnetically insulated ion diode6 and the 
plasma opening switch (POS).‘,’ It has been recently sug- 
gested2*3 that this mechanism is responsible for the fast mag- 
netic field penetration observed in POS experiments.’ 

The mechanism of magnetic field penetration is a result 
of the electron dynamics only, while the ions are assumed 
immobile. The electrons, which carry the current, decelerate 
as they move from a low-density region to a high-density 
region in a nonuniform density plasma, or as they move from 
a small radius to a large radius in cylindrical geometry. Due 
to this deceleration the magnetic field energy that is convect- 
ed into the plasma is larger than the magnetic field energy 
that is convected out of the plasma. A net magnetic field 
energy is then deposited in the plasma, and the magnetic 
field in the plasma grows. The rate of penetration of the 
magnetic field is determined by the Hall field. In a recent 
study’ we calculated the rate of energy dissipation during 
the penetration. The dissipation was found to be large and its 
rate was found to depend not on the resistivity that causes 
the dissipation but rather on the nondissipative Hall field. 

In the present paper we study the evolution of the elec- 
tron thermal energy during the magnetic field penetration. 
This is an important subject because the electron tempera- 
ture significantly affects the plasma behavior. We assume 
that the dissipated magnetic field energy is converted into 
electron thermal energy. The heating of the electrons does 
not affect the magnetic field evolution in the cylindrical case. 

In the case of a density gradient, however, the rising electron 
pressure affects the evolution of the magnetic field through 
the pressure gradient. We solve simultaneously for the evo- 
lution of the magnetic field and of the electron energy. Per- 
haps the problem of most interest is the magnetic field pene- 
tration into a cold unmagnetized plasma. We find for the 
shock penetration, that in both the density gradient case and 
the cylindrical case the energy in the shock downstream is 
equally divided between magnetic field energy and electron 
thermal energy. We also study the more general problem of 
the shock propagation into a warm magnetized plasma. We 
derive the Hugoniot relations that relate the magnetic field 
energy and electron thermal energy in the shock upstream 
and downstream to the shock velocity. As is often the case 
with shocks, the rate of dissipation and the resulting jump in 
the electron thermal energy do not depend on the resistivity. 
The resistivity, which causes the dissipation, determines 
only the thickness of the shock layer. 

We emphasize that the shocks described here differ 
from magnetohydrodynamic (MHD) shocks in that the en- 
ergy here is convected by the electrons in a direction that is 
perpendicular to the direction of propagation of the shock. 
The two-dimensional solution, with the radial boundary 
conditions, is essential to a full understanding of the prob- 
lem. Here we solve only the approximated one-dimensional 
problem. However, a recent two-dimensional study of the 
cylindrical case’ predicts the same partition of energy, as 
predicted in the present one-dimensional model. 

We note that in the density gradient case the pressure 
gradient increases the shock velocity : times over the pre- 
vious well-known value.’ The previous result is still valid if 
the dissipated energy does not go into electron heating. 

In addition to the penetration into a cold unmagnetized 
plasma, we look at some more special limits. An interesting 
case is the penetration of a weak magnetic field into a warm 
plasma. We show that in the density gradient case the shock 
velocity is determined by the electron thermal energy rather 
than by the magnetic field energy. 

In Sec. II the governing equations for the magnetic field 
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and the electron thermal energy are presented. In Sec. III the 
slab case with a density gradient is analyzed and in Sec. IV 
the cylindrical geometry case is analyzed similarly. In Sec. V 
a direct relation between the heating of an electron along its 
orbit and the deviation from the frozen-in law is demonstrat- 
ed. In Sec. VI we study the magnetic field penetration in the 
case that the electrons accelerate as they move from a high- 
density region to a low-density region, or as they move from 
a large to small radius. In this case the electrons convect 
more magnetic field and thermal energies out of the plasma 
than they convect into the plasma. During the steady state, 
therefore, a part of the magnetic field energy, which flows 
axially into the plasma, is convected radially out of the plas- 
ma and a part is dissipated. The dissipated energy becomes 
electron thermal energy that is convected away out of the 
plasma as well. 

In our model we have made several simplifying assump- 
tions. The ion motion, the electron inertia, heat conduction, 
and the radial boundary conditions, among others, were ne- 
glected, We also assumed that the electron pressure is iso- 
tropic. It is of much interest to examine how the relaxation of 
these approximations affects the results. 

II. THE MODEL 

We study the magnetic field evolution in plasmas, where 
the governing equations are Faraday’s law, 

-+T=VxE, (1) 

Ampere’s law, 
(4v/c)j = VXB, 

the electron momentum equation, 

(2) 

E = rlj - (v, x3)/~ - vp,ien, (3) 
and the electron heat-balance equation, 

~+v+v, = E-j. (4) 

Here E and B are the electric and magnetic fields, j is the 
current, n is the electron (or ion) density, v,, pe, and E are 
the electron flow velocity, pressure, and energy, 7 is the re- 
sistivity, - e is the electron charge, and c is the velocity of 
light in vacuum. In Eq. (2) we neglected the displacement 
current and in Eqs. ( 3 ) and (4) the electron inertia. We also 
neglected the heat conduction in Eq. (4). The electron pres- 
sure is assumed to be isotropic and to satisfy 

pe = $E’ (5) 
An additional assumption is that the work that is done on the 
plasma increases the electron thermal energy, and we neglect 
the energy delivered to the ions. 

Before we proceed we write the Poynting theorem, 
which results from Eqs. ( 1) and (2) as 

$ z +-$V*ExB = - Egj. 
( > 

(6) 

The electric field energy is smaller than the magnetic field 
energy as a result of the neglect of the displacement current 
in Ampere’s law. The Joule heating converts magnetic field 

energy into electron thermal energy. Combining Eqs, (4) 
and (6) we write the energy conservation as 

$(~+E)+v(+~, +eExB)=O. (7) 

We now make the major assumption that the process is 
so fast that the ions are immobile,‘-4 and therefore 

j= - em,. (8) 
The electron density is time independent as a result of Eqs. 
(2)and(8).CombiningEqs.(I)-(3)and(g),weflndthat 
the equation that governs the magnetic field evolution is 

aB c2q 2 
dt- 4?r 

--VB-vx(~)+v(~)xvp,. (9) 

The first term on the right-hand side causes the resistive 
diffusion, the second term results from the Hall field, and the 
third term represents the pressure gradient. Equations (2), 
(4), and (8) result in 

$-+*V f -&j*Vc=#. 
0 

(IQ) 

We used the fact that V-j = 0, which follows (2). In the next 
two sections we study two cases. The first is the slab case 
where B = Z$(n,y,t), and z is ignorable, d /dz = 0. The sec- 
ond is the cylindrical case of azimuthal symmetry 
B = .?&3( r,z,t) and d /&9 = 0, 

Ill. THE SLAB CASE 

In the slab case Eqs. (9) and ( 10) become 

g+~w(~+~E)xv(pp3, (11) 

g + ~~*VB x [ cvE+J-Ev r 
4rret-t ( >I 3 4xre n 

=-f&Iv3/2. 
We assume now that n = n(r), and look for solutions in 
which 3 and E depend only weakly on y. Equations (4) and 
(6) for the thermal and magnetic field energies are then ap- 
proximated as 

fE+it 260 
( > at ay 3 ey = Tg (13) 

and 

$(g)+-pg.+E$-)= -?g. (14) 

The thermal energy and the magnetic field energy change 
due to they dependence of the fluxes and due to Joule heat- 
ing. This y dependence is a result of the density gradient. 

We write the equations in the form 

~+~~(~+~p~, (15) 

de 
at’ 

5 ca a3 ~2’17 a3 2 
-------=- -, 3 4rre ax ( > (4n)2 ax 

(16) 

where LT = - (a /a~> ( l/n). Since the dependence ony is weak, 
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y serves only as a parameter. The magnetic field in Eq. ( 15) 
evolves due to the three effects mentioned before. The first is 
the by now well-known convective skin effect,ld5 which re- 
sults from the Hall field. If the electrons decelerate or acce- 
lerate as they move in they direction into a higher or a lower- 
density plasma, the magnetic field they convect is 
accumulated in or evacuated from the plasma. The second 
effect is the evolution of the magnetic field due to gradients 
of density and pressure normal to each other, and the third 
effect is resistive diffusion. The thermal energy in Eq. ( 16) 
evolves as a result of two effects. The first is the convection of 
energy by electrons of a varying velocity in they direction. 
The convection may increase or decrease the local energy 
depending upon whether the electrons decelerate or acceler- 
ate. The second effect is the Joule heating, which is a source 
of electron thermal energy. 

In the following we examine the shock-wave penetra- 
tion in the combined presence of all these effects. We assume 
that all the variables are functions of 

L+x -At. (17) 

Equation ( 15) is readily integrated to 

-~B+~(g+~e)=~~+c,. (18) 

By expressing E as a function of B, we write Eq. ( 16) as 

(19) 

We denote the values in the shock upstream as E _ and B _ 
and those downstream as E + and B + . From Eqs. ( 18) and 
( 19) we find that the electron energy is 

eA E= Le, -pB. 
3 ca 

+ (B*-B: 1 
8lT 

+*B, -++, (20) ca 
By the subscript t we mean that the subscript could be 
either + or - along the equation. The equation for the 
spatial dependence of the magnetic field is 
c2v dB 

( 
10 ca --= --6 

4~ dg 9 e * 
-LAB, 

3 > 

X exp 
( SW-B, 1) 

,+~(B2;~,““) 

++B, -;1B-2QEca 
9 e *’ 

By requiring that the derivative of B is zero on both sizes of 
the shock we obtain the jump relations across the shock: 

[ 
-AB+T(g+f+] =0 

and 

K f-•-AB)exp( -s)] =O. 

(22) 

(23) 

Perhaps the most interesting case is the penetration of a 
magnetic field into an unmagnetized cold plasma, in which 
B _ = E _ = 0. If the penetrating magnetic field is B + , it 
follows from the Hugoniot relations (22) and (23) that 

E+ =B2,/8rr (24) 
and 

A = j(caB+ /8ne). 
The magnetic field is of the form 

(25) 

B = B+/{l - exp [ ;(aB+/ecv)c ] ). (26) 
The energy downstream the shock is equally divided be- 
tween the magnetic field energy and the electron thermal 
energy. In fact, from Eq. (20) it is easily seen that this equi- 
partition occurs also through the shock. From Eq. (14) it 
follows that the flux of magnetic field energy in the positivey 
direction is 

2 0: - dx$BEX =c- .--. 
477en 3 3 hi- 

The net flux into a slab between y = y, and y = yZ is 

-.scB: 1 2 1 --- ---. (27) 
3 3 47re 877 ( n(y,) n(y2 1 > 

The energy that goes into building the magnetic field in this 
slab is 

1 --- 
n(y2 1 

. (28) 

Therefore, three-fourths of the magnetic field energy flux 
into the plasma go into building the magnetic field energy 
and the rest is dissipated. The Joule heating is the difference 
between the net energy flux (27) and the deposited energy 
( 28 ) . The dissipated energy is therefore 

, 

(29) 
The radial flux of thermal energy into the slab is easily found 
from Eq. (13) to be 

51 1 1 =-- -- ClB3 
3 87~ 45-e 3 

( ---. 
+ n02) n(y, ) > 

(30) 

The rate of growth of thermal energy is the sum of the flux 
(30) and the Joule heating (29), and is equal to the rate of 
growth of the magnetic field energy in the plasma (28). 

To sum up, the energy that flows into the plasma is two- 
thirds magnetic field energy and one-third thermal energy. 
Of the magnetic field energy flux three-fourths go into build- 
ing the magnetic field and one-fourth into heating. Alto- 
gether, 3.2 = 4 goes to the magnetic field energy and 
f + 3.4 = 1 into the thermal energy. Again, we find that the 
energy deposited in the plasma is equally divided between 
magnetic field energy and electron thermal energy. 

The above analysis of the energy flow could also be per- 
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formed for the general case. For simplicity we analyzed the 
energy flow only in the case of penetration into a cold un- 
magnetized plasma. 

We note also that the shock velocity obtained here is 
five-thirds times larger than that obtained when the electron 
heating is not taken into account.’ The result obtained in the 
latter case is still valid if the dissipation does not cause elec- 
tron heating, for example, when the dissipation results from 
collisions with neutrals. 

Having analyzed the penetration into a cold unmagne- 
tized plasma, we now look at the penetration into a cold but 
magnetized plasma, where (B + - B _ )/B _ g 1. In this 
case we find that 

A = (ca/8lre) (B, + B- ). (31) 
The change in the thermal energy is smaller than the change 
in the magnetic field energy, and the ratio of thermal energy 
change to magnetic field energy change is proportional to 
(B + - B _ > ‘/B ‘_ . The profile of the magnetic field is 

B=B- + (B, -B-l 
(1 +exp[(B?+ -BY la[/4qeB- 1) ’ 

(32) 
Finally, we discuss the penetration into a warm unmag- 

netized plasma where B _ = 0 and B ‘+ ~QE _ . In this case 

E-b 
3 B: --- 
2 8a (33) 

and 
A = (ca/e)(5e- /18r)‘“. 

The magnetic field profile is 

B+ 

(34) 

B= cl - exp[$(aB+ /ecv)5]) ’ 
(35) 

The change in the magnetic field energy across the shock is 
small relative to the change in the electron thermal energy. 
The ratio of these changes is proportional to B .+. /EI’~. The 
shock velocity is determined by the thermal energy and not 
by the magnetic field. The dominant effect here is the pres- 
sure gradient and not the convective skin effect. 

IV. CYLINDRICAL GEOMETRY 

We turn now to the case of cylindrical geometry and 
uniform density. Since the density is uniform the effect of the 
pressure gradient is absent here. The electron heating does 
not affect the evolution of the magnetic field. We first calcu- 
late the magnetic field. The calculated magnetic field is then 
used to calculate the heating. Eq. (9) for b E - rB, becomes 

(36) 

On the right-hand side we assumed c9b /dzg&‘b /&. The heat 
balance equation for W= t ‘E becomes 

w lYb 
-z 

=- (;; 2 
2 IVb I . 

Let us assume that b and Ware mainly functions ofz and the 
second term therefore vanishes. Equation (37) is then ap- 
proximated as 

F+(-$&@$=&(zy. (38) 

We look for shock solutions where the independent variable 
isc=z- At. Equation (38) becomes 

-/&!c+ cw T$ db -=--* 
db 2mer 2 (4d2 d5 

(39) 

We first solve Eq. (36) for the magnetic field, 

b= cbi- -b- exp[Cb+ 
(1 -exp[(b. 

-b- )fhcr2q]) (MI 
-b- ~~/necr2~]~ * 

The shock velocity is 
R = c(b + + b _ )/4mer ‘. (41) 

The energy is readily found to be 
b-(b, +b-) 

877 > 
b-b, 6’ 

+ 8a +B?r’ (42) 

The most interesting problem in the cylindrical case, as 
in the slab case, is the penetration into a cold unmagnetized 
plasma. The energy in the shock downstream is evenly divid- 
ed between magnetic field energy and electron thermal ener- 
gy similarly to the density gradient case. As we have shown 
previously4 one-quarter of the magnetic field energy flux 
goes into heating. The radial Poynting flux is 
(cb “, /24rerzr ’ ) . The radial flux of thermal energy is half of 
that, i.e., (cb ‘+ /48?renr ‘). When the dissipation is taken 
into account, we get the equal deposition of energy into mag- 
netic field energy and electron thermal energy. Thus, this 
equal partition of energy occurs both for the slab density 
gradient case and for the cylindrical case. 

The shock solution dictates a specific relation between 
the radial flows of magnetic field energy and thermal energy. 
The question rises as to how various radial boundaries affect 
the radial flow from the cathode. We have recently carried 
out a two-dimensional analysis of a cold unmagnetized plas- 
ma in a cylindrical geometry,4 where the heating at the cath- 
ode was shown to convert one-third of the incoming magnet- 
ic field energy into thermal energy, the same relation that is 
dictated by the shock solution given above. A two-dimen- 
sional analysis that takes into account the radial boundary 
conditions is necessary for the other cases as well. 

We examine two additional cases. First we assume that 
W- =Oand (b, - b _ )/b _ ( 1. In this case the thermal 
energy across the shock is 

w= (b-b- 1’ 

8r(b, +b- ) 
b, -b- -$b-&(b;bb;; 

+ 
(43) 

The ratio of thermal energy gain to magnetic field energy 
gain is approximately &[ (b + - b _ )/b _ 1. 
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As a last example we look at the shock wave that pene- 
trates into a hot unmagnetized plasma. We assume b _ = 0. 
The energy is 

W= W- exp(2b/b+ > + b2/8,rr. 
The energy downstream is 

(4) 

W, = W- exp(2) + b ?+ /87~. (45) 
The ratio of the change in the magnetic field energy to the 
change in the thermal energy is b ‘+ / [ 877 W- exp (2) 1. 

We derived the general Hugoniot relations for the 
shocks. The penetration into a cold unmagnetized plasma 
might be relevant for laboratory plasmas, as that in the POS, 
and for other weakly nonuniform plasmas. The occurrence 
of the other cases in less clear. A uniform pressure but a 
nonuniform density imply a nonuniform temperature. The 
penetration described here is of interest if it is faster than 
processes of heat convection, which make the temperature 
uniform. 

V. THE FROZEN-IN LAW AND ELECTRON HEATING 

The deviations from the frozen-in law and the electron 
heating both result from the resistivity. A detailed discussion 
of the deviations from the frozen-in law is given elsewhere. lo 
Here we show an example where the deviation from the fro- 
zen-in law is related to the rate of heating per electron in a 
cylindrical geometry. 

Combining Eq. (9) with the continuity equation, 

we obtain (for a cylindrical geometry) 

-qgv L xvp,. 
0 (47) enr n 

Here d /dt = a /iIt + v;V is the convective derivative along 
an electron orbit, and b E - rB,. When the right-hand side 
vanishes, b /nr ’ is constant along an electron orbit. This is 
the familiar frozen-in law in cylindrical geometry. 

Let us look at the uniform density case, where b andp, 
are functions mainly of z. Equation (47) is approximated as 

c2r] a26 =--. 
4mr2 di? 

(48) 

We look at the shock penetration into an unmagnetized plas- 

ma. The deviation from the frozen-in law is found by inte- 
grating along an electron orbit across the shock. Using 
dr/dt = - j,/en and R = cb + /4mer ’ [ Fq. (41) 1, we ob- 
tain 

[-$I =fyyw $#. (49) 

Thus, the deviation from the frozen-in law is proportional to 
the rate of heating per electron. The rate of heating per elec- 
tron is thus 

(50) 

As previously, the electron thermal energy in the shock 
downstream equals the magnetic field energy. 

VI. THE CASE OF NO PENETRATION 

When the electrons accelerate as they move from a high- 
density to a low-density plasma or from a large radius to a 
small radius, the convective skin effect does not exist, and 
the magnetic field does not penetrate into the plasma. More- 
over, we have even shown that the magnetic field is expelled 
from an initially magnetized plasma.3*4 Here we analyze the 
steady skin layer. In the skin layer there is a balance between 
the axial energy flow into the plasma due to the large skin 
current and the energy that is convected radially. The den- 
sity nonuniformity or the cylindrical geometry cause the 
electrons to convect more energy out of the plasma than into 
the plasma. 

Let us start with the nonuniform density slab case. For 
the steady state Eqs. ( 15) and ( 16) become 

+(g+$+wE, (51) 

5 ca E-C277 alI 
3 e 4r ax' (52) 

The boundary conditions are 
B(x=O) =B,, B(x= co) =B,. (53) 

Equations (5 1) and (52) combine to 
d2B $;$B2=v-. 
dX2 

With the second boundary condition we obtain 

(54) 

dB 5a -=- 
dx 6eq 

(B2-B2,). 

The magnetic field is therefore 

(55) 

B=B, 1 + [(B, -B, )/(B, + B, )] exp(5B,ax/3eq) 
1 - [(B, -B, )/(B,, + B, )] exp(5B,ax/3eq) 

; x>o. (56) 

I 
If the penetration is into an unmagnetized plasma, B, = 0, With Eqs. (52) and (55) the energy at the steady state is 
the magnetic field profile becomes found to be 

BO 
B= [ 1 - (5aBo/6eq)x] ’ x’o’ (57) 

E= [(B2-B;))/~TT]. (58) 
Let us examine the energy flow into a semi-infinite plas- 
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ma slab located between the planesy = yi andy = y2. The x 
component of the Poynting vector flux per unit length at the 
plasma boundary is 

YZ 

s Yt 
dv -& BE; 

ZZ 

=&.?(B:,-Bz,) mm!---- . 1 
n(Y2) n(h ) > (59) 

Note that n(y, ) > n(y, ) but the magnetic field is negative 
and therefore the flux is positive. In the derivation we used 
Eq. (55). Here there is no dependence on the resistivity. The 
skin layer becomes narrow if the resistivity is small and the 
flux remains finite. The flow into the slab in they direction is 

s 
=dx ’ 

0 
z BE, ‘= 

YI 

=-- -- B2++(B2-Bf,) 

1 =-- ---. 
WI 1 > 

(60) 

The energy dissipation is 
I 

c” dy [* dx EJy 
JY, Jo 

=-- 

-BfJB, -B,) 
K 

1-p . 1 
B(Y2 1 n(v, 1 > 

(61) 

The sum of the energies in Eqs. (57), (6(l), and (61) is of 
course zero. When B, = 0, one-third of the energy that 
flows axially into the plasma is dissipated and two-thirds are 
convected away out of the plasma. When B. c B, , most of 
the energy that flows into the plasma is convected away and 
the rate of dissipation is small. 

In the flow of electron thermal energy there is a balance 
between the dissipated magnetic field energy and the energy 
that is convected out of the plasma. 

We now turn to cylindrical geometry. Equations (36) 
and (38) for the steady state become 

and 
CW c2q ab -=--, 

2nner ’ (41T)2 az 
with the boundary conditions 

b(z=O) =b,, b(z= 00) =b,. 
The magnetic field is 

(64) 

If b, = 0, the magnetic field profile is 
b = b,/( 1 - 2b,z/ecvnr ‘); z>O. (66) 

The electron thermal energy is 
W= [(b2-b;))/8+ (67) 
We look now at the energy flow into a semi-infinite plas- 

ma slab located for z>O between r = ri and r = r, > rl . The 
magnetic field energy flow into the plasma is 

drbE,= -i 

(621 

(63) 

b=b, 1 + [ (b. - b, )/(bo + b, ) ] exp(2b,z/ecrjnr ‘1 
1 - [(b, -b, )/(b, + b, )] exp(2b,z/eqnr2) 

; z>o. 

The radial flow in the plasma is 

C 

s 
m 

TO 
dz bEZ = f 

(69) 
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t 
The net radial energy flow out of the plasma is 

- 5C(2inbi) (+L). 
The rate of dissipation is 

dr Zn-rE,j, 

ZE- 2YT* 
-hi%+* 

(70) 

x [j(b”,. - bi) -b:(b, -ho)]. (71) 

Again, the energy pumped into the plasma (69 ) is partially 
convected radially (70) and partially dissipated (71). If 
6, = 0 one-third is dissipated and two-thirds convected 
away. 

VII. CONCLUSIONS 
In this paper we have studied the simultaneous magnet- 

ic field penetration and electron heating in plasmas, where 
the time scale of the processes is so short that the ions are 
immobile. The two opposite behaviors, the fast wave propa- 
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gation due to the convective skin effect, and the small pene- 
tration into a narrow skin layer, have been analyzed for the 
two configurations: a plasma slab of a nonuniform density 
and a cylindrical plasma of azimuthal symmetry. General 
Hugoniot relations have been derived for the shock penetra- 
tion into a warm magnetized plasma. The major novel re- 
sults presented in this paper are that the energy in the down- 
stream of the shock penetration into a cold unmagnetized 
plasma is evenly divided between magnetic field energy and 
electron thermal energy, the enhanced shock velocity due to 
the combination of the convective skin effect and the pres- 
sure gradient, the dependence of the shock velocity on the 
electron thermal energy in the warm plasma case, and the 
relation between the deviation from the frozen-in law to the 
heating of an electron along its orbit. 

The phenomena described here could be relevant to 
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plasmas in pulsed-power devices such as the POS, and also to 
other nonuniform laboratory and space plasmas. 
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