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The simultaneous magnetic field penetration and electron heating in plasmas of nonuniform
density and of azimuthal cylindrical symmetry are studied. The penetration is caused by both
the convective skin effect and the pressure gradient. The shock penetration of the current layer
into a cold unmagnetized plasma is shown to result in equal magnetic field energy and electron
thermal energy. A direct relation is shown between the heating of an electron along its orbit
and the deviation from the frozen-in law. General Hugoniot relations are presented for the
shock penetration into warm magnetized plasmas. The profiles of the magnetic field and of the
electron thermal energy are found in the steady skin layer that is formed in the case of no

penetration.

I. INTRODUCTION

The penetration of a magnetic field into plasmas is an
important process in the plasma evolution. Recently, a
mechanism for magnetic field penetration, which results ei-
ther from a density gradient or from a cylindrical geometry,
has been explored.'> This penetration is of much interest,
since it is expected to occur for times (between the electron
and the ion cyclotron periods) and for lengths (between the
electron and the ion skin depths) that are characteristic of
plasmas in certain pulsed-power devices. Indeed, the pene-
tration of the magnetic field into the plasmas is crucial to the
operation of the magnetically insulated ion diode® and the
plasma opening switch (POS).”® It has been recently sug-
gested?? that this mechanism is responsible for the fast mag-
netic field penetration observed in POS experiments.®

The mechanism of magnetic field penetration is a result
of the electron dynamics only, while the ions are assumed
immobile. The electrons, which carry the current, decelerate
as they move from a low-density region to a high-density
region in a nonuniform density plasma, or as they move from
a small radius to a large radius in cylindrical geometry. Due
to this deceleration the magnetic field energy that is convect-
ed into the plasma is larger than the magnetic field energy
that is convected out of the plasma. A net magnetic field
energy is then deposited in the plasma, and the magnetic
field in the plasma grows. The rate of penetration of the
magnetic field is determined by the Hall field. In a recent
study* we calculated the rate of energy dissipation during
the penetration. The dissipation was found to be large and its
rate was found to depend not on the resistivity that causes
the dissipation but rather on the nondissipative Hall field.

In the present paper we study the evolution of the elec-
tron thermal energy during the magnetic field penetration.
This is an important subject because the electron tempera-
ture significantly affects the plasma behavior. We assume
that the dissipated magnetic field energy is converted into
electron thermal energy. The heating of the electrons does
not affect the magnetic field evolution in the cylindrical case.
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In the case of a density gradient, however, the rising electron
pressure affects the evolution of the magnetic field through
the pressure gradient. We solve simultaneously for the evo-
lution of the magnetic field and of the electron energy. Per-
haps the problem of most interest is the magnetic field pene-
tration into a cold unmagnetized plasma. We find for the
shock penetration, that in both the density gradient case and
the cylindrical case the energy in the shock downstream is
equally divided between magnetic field energy and electron
thermal energy. We also study the more general problem of
the shock propagation into a warm magnetized plasma. We
derive the Hugoniot relations that relate the magnetic field
energy and electron thermal energy in the shock upstream
and downstream to the shock velocity. As is often the case
with shocks, the rate of dissipation and the resulting jump in
the electron thermal energy do not depend on the resistivity.
The resistivity, which causes the dissipation, determines
only the thickness of the shock layer.

We emphasize that the shocks described here differ
from magnetohydrodynamic (MHD) shocks in that the en-
ergy here is convected by the electrons in a direction that is
perpendicular to the direction of propagation of the shock.
The two-dimensional solution, with the radial boundary
conditions, is essential to a full understanding of the prob-
lem. Here we solve only the approximated one-dimensional
problem. However, a recent two-dimensional study of the
cylindrical case* predicts the same partition of energy, as
predicted in the present one-dimensional model.

We note that in the density gradient case the pressure
gradient increases the shock velocity § times over the pre-
vious well-known value." The previous result is still valid if
the dissipated energy does not go into electron heating.

In addition to the penetration into a cold unmagnetized
plasma, we look at some more special limits. An interesting
case is the penetration of a weak magnetic field into a warm
plasma. We show that in the density gradient case the shock
velocity is determined by the electron thermal energy rather
than by the magnetic field energy.

In Sec. II the governing equations for the magnetic field
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and the electron thermal energy are presented. In Sec. III the
slab case with a density gradient is analyzed and in Sec. IV
the cylindrical geometry case is analyzed similarly. In Sec. V
a direct relation between the heating of an electron along its
orbit and the deviation from the frozen-in law is demonstrat-
ed. In Sec. VI we study the magnetic field penetration in the
case that the electrons accelerate as they move from a high-
density region to a low-density region, or as they move from
a large to small radius. In this case the electrons convect
more magnetic field and thermal energies out of the plasma
than they convect into the plasma. During the steady state,
therefore, a part of the magnetic field energy, which flows
axially into the plasma, is convected radially out of the plas-
ma and a part is dissipated. The dissipated energy becomes
electron thermal energy that is convected away out of the
plasma as well.

In our model we have made several simplifying assump-
tions. The ion motion, the electron inertia, heat conduction,
and the radial boundary conditions, among others, were ne-
glected. We also assumed that the electron pressure is iso-
tropic. It is of much interest to examine how the relaxation of
these approximations affects the results.

Il. THE MODEL

We study the magnetic field evolution in plasmas, where
the governing equations are Faraday’s law,

¢ dt

Ampére’s law,

(47/c)j = VXB, (2)
the electron momentum equation,

E=9j— (v,XB)/c —Vp,/en, 3)
and the electron heat-balance equation,

de

— + V ev, = E-j 4

E” 3 J- (4)

Here E and B are the electric and magnetic fields, j is the
current, 7 is the electron (or ion) density, v,, p,, and € are
the electron flow velocity, pressure, and energy, 71 is the re-
sistivity, — e is the electron charge, and c¢ is the velocity of
light in vacuum. In Eq. (2) we neglected the displacement
current and in Egs. (3) and (4) the electron inertia. We also
neglected the heat conduction in Eq. (4). The electron pres-
sure is assumed to be isotropic and to satisfy

P. =3¢ (5)
An additional assumption is that the work that is done on the
plasma increases the electron thermal energy, and we neglect
the energy delivered to the ions.

Before we proceed we write the Poynting theorem,
which results from Eqs. (1) and (2) as

a (BB)
at 4r

The electric field energy is smaller than the magnetic field
energy as a result of the neglect of the displacement current
in Ampére’s law. The Joule heating converts magnetic field

3. (6)
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energy into electron thermal energy. Combining Eqgs. (4)
and (6) we write the energy conservation as
2 (BB o) 4 v(en +EXB)=0. ()
9t 4

We now make the major assumption that the process is
so fast that the ions are immobile,'* and therefore

j= —env,. (8)

The electron density is time independent as a result of Egs.
(2) and (8). Combining Egs. (1)-(3) and (8), we find that
the equation that governs the magnetic field evolution is

9B _ 1 gop VX(JXB)+V( )pre %)
at 47 en

The first term on the right-hand side causes the resistive
diffusion, the second term results from the Hall field, and the
third term represents the pressure gradient. Equations (2),
(4), and (8) result in

de 5 1 1, ;

at 3 Ejv(en) enJV€ -
We used the fact that V-j = 0, which follows (2). In the next
two sections we study two cases. The first is the slab case
where B = &, B(x,y,t), and zis ignorable, d /dz = 0. The sec-
ond is the cylindrical case of azimuthal symmetry
B=2,B(rzt)and 4/90 =0,

(10)

HI. THE SLAB CASE

In the slab case Egs. (9) and (10) become
JdB B* 2 ) ( ) N o
—_— = —+ = v VB 11
ot (8 LT i (b
de [ 5 ce ( 1 )]
— VB Ve + — vVi—
at +e X 4eren €+ 3 4ge n

VB2 (12)

(417)2

We assume now that 7 = n(yp), and look for solutions in
which B and € depend only weakly on y. Equations (4) and
(6) for the thermal and magnetic field energies are then ap-
proximated as
de 5 ;
3t +é‘y(3 Eve") )
and

J (B") 3 (cvesz 2 ¢B ae) 2
9 _2 PN R (14
at +8y 4 3 4men Ox oy (14

The thermal energy and the magnetic field energy change

due to the p dependence of the fluxes and due to Joule heat-

ing. This y dependence is a result of the density gradient.
We write the equations in the form

(13)

8B  ca 4 (BZ 2 )_czvy J%B

c?z‘+ e &x 87z'+3E T A7 ax? (15)
e 5 eca 8B 2y (_&3)2 (16)
dt 3 4re a”x T 4mi\gx/)’

where = (d /dy) (1/n). Since the dependence on yis weak,
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y serves only as a parameter. The magnetic field in Eq. (15)
evolves due to the three effects mentioned before. The first is
the by now well-known convective skin effect,’ which re-
sults from the Hall field. If the electrons decelerate or acce-
lerate as they move in the y direction into a higher or a lower-
density plasma, the magnetic field they convect is
accumulated in or evacuated from the plasma. The second
effect is the evolution of the magnetic field due to gradients
of density and pressure normal to each other, and the third
effect is resistive diffusion. The thermal energy in Eq. (16)
evolves as a result of two effects. The first is the convection of
energy by electrons of a varying velocity in the y direction.
The convection may increase or decrease the local energy
depending upon whether the electrons decelerate or acceler-
ate. The second effect is the Joule heating, which is a source
of electron thermal energy.

In the following we examine the shock-wave penetra-
tion in the combined presence of all these effects. We assume

that all the variables are functions of

f=x— At (17)
Equation (15) is readily integrated to
2 ¢*n dB
—AB+— (———— — ) C. 18
+e 877'+3 417'd§+l (1)
By expressing € as a function of B, we write Eq. (16) as
2
_47,-,116._{_5 ca _cndB (19)
dB 3 e 4r df
We denote the values in the shock upstream ase_ and B _

and those downstream as € , and B, . From Egs. (18) and
(19) we find that the electron energy is

5 ed
f=(?€i‘53i)°’“’( mel B8 ’)

(B>—B2%) 2
f 2 7). P g€

20
87 ca (20)

By the subscript 4 we mean that the subscript could be
either + or — along the equation. The equation for the
spatial dependence of the magnetic field is

2
c_zd_B=(_1_0_£g X _i,wi)
47 d¢ 9 e 3
Xexp( ca/{ (B—Bi))
+iﬁ£<ﬂ)
3 e 8mr
5 10 ca
—AB —AB — — — . 21
+3 9 o €, (21)

By requiring that the derivative of B is zero on both sizes of
the shock we obtain the jump relations across the shock:

[ AB-{——(—B——+—6)] 0 (22)
e \ 87
and
[(E—E—AB)exp(— caB )] =0. (23)
e 4ireld
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Perhaps the most interesting case is the penetration of a
magnetic field into an unmagnetized cold plasma, in which

B_ =e_ =0. If the penetrating magnetic field is B __ , it
follows from the Hugoniot relations (22) and (23) that
€, =B% /87 (24)
and
=3(caB, /8me). (25)
The magnetic field is of the form
B=B_/{1—exp[i(aB./ecy)§ |} (26)

The energy downstream the shock is equally divided be-
tween the magnetic field energy and the electron thermal
energy. In fact, from Eq. (20) it is easily seen that this equi-
partition occurs also through the shock. From Eq (14) it

follows that the flux of mdgneuc field ener gy inthe pumuvc y
direction is

-—f dx——B

The net flux into a slab betweeny =y, and y =y, is

41ren 3

5 B®,
3 87

(27)

c B’ ( 11 )
dmre 8w \n(y,) n(y;)

The energy that goes into building the magnetic field in this
slab is

Y2 B 2 B 3
fdy ) =25 *( — ).(28)
i 87 3 8me 8w \n(y,) n(y)
Therefore, three-fourths of the magnetic field energy flux
into the plasma go into building the magnetic field energy
and the rest is dissipated. The Joule heating is the difference

between the net energy flux (27) and the deposited energy
(28). The dissipated energy is therefore

© Y2 B3

f dxfdyw§=ilc+(1_1>.

— ) 3 4me 487w \n(y,) n(y,)
(29)

The radial flux of thermal energy into the slab is easily found
from Eq. (13) tobe

= (", d(s
d d—(—— )
] g (G
=510iB3+(1_1).
n(y,) n(y)

2.3
3 03

3 87 4me 3 (30)

The rate of growth of thermal energy is the sum of the flux
(30) and the Joule heating (29), and is equal to the rate of
growth of the magnetic field energy in the plasma (28).

To sum up, the energy that flows into the plasma is two-
thirds magnetic field energy and one-third thermal energy.
Of the magnetic field energy flux three-fourths go into build-
ing the magnetic field and one-fourth into heating. Alto-
gether, 3-3=1 goes to the magnetic field energy and
1+3i=14 mto the thermal energy. Again, we find that the
energy deposited in the plasma is equally divided between
magnetic field energy and electron thermal energy.

The above analysis of the energy flow could also be per-
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formed for the general case. For simplicity we analyzed the
energy flow only in the case of penetration into a cold un-
magnetized plasma.

We note also that the shock velocity obtained here is
five-thirds times larger than that obtained when the electron
heating is not taken into account.! The result obtained in the
latter case is still valid if the dissipation does not cause elec-
tron heating, for example, when the dissipation results from
collisions with neutrals.

Having analyzed the penetration into a cold unmagne-
tized plasma, we now look at the penetration inio a cold but
magnetized plasma, where (B, —B_ )}/B_ «1. In this
case we find that

A= (ca/8me)(B, +B_). (31)
The change in the thermal energy is smaller than the change
in the magnetic field energy, and the ratio of thermal energy

change to magnetic field energy change is proportional to
(B, —B_)*B? . The profile of the magnetic field is

(B+ - B- )
B=B_ + > 5 .
{1 +exp[(B* — B2 )af /4ceB _ |}
(32)
Finally, we discuss the penetration into 2 warm unmag-
netized plasma where B_ =0 and B <e_ . In this case
3 (Se_ )"2 3 B?,
€, =€e_+—\—} B, —— 33
N AT T2 8 %)
and
A= (case) (5e_ /18w)'>, (34)
The magnetic field profile is
B
= (35)

B= .
{1— exp[4(aB . Jecq)§ ]}

The change in the magnetic field energy across the shock is
small relative to the change in the electron thermal energy.
The ratio of these changes is proportional to B, /€'/% The
shock velocity is determined by the thermal energy and not
by the magnetic field. The dominant effect here is the pres-
sure gradient and not the convective skin effect.

IV. CYLINDRICAL GEOMETRY

We turn now to the case of cylindrical geometry and
uniform density. Since the density is uniform the effect of the
pressure gradient is absent here. The electron heating does
not affect the evolution of the magnetic field. We first calcu-
late the magnetic field. The calculated magnetic field is then
used to calculate the heating. Eq. (9) for b= — rB, becomes

db b b _ 3%

3t 2mner? 9z 4w a2

On the right-hand side we assumed db /3z> b /9r. The heat
balance equation for W=r *¢ becomes

(36)

oW ( ¢ ), ( c ) 3b
— e,°Vb XVW W—
at dzner) ° X + 2arner? 9z
=T \ypp2 37
vl (37)
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Let us assume that b and W are mainly functions of z and the
second term therefore vanishes. Equation (37) is then ap-
proximated as
P () w2 (2]
ot 2arner? 8z  (4m)*\ 3z
We look for shock solutions where the independent variable
is ¢ = z — At. Equation (38) becomes

(38)

dw cW net  db
db 2oner®  (4m)? dE
We first solve Eq. (36) for the magnetic field,
b {b, —b_ exp[(b, —b_){/necrn]} . (40)
{1 —exp[ (b, —b_)¢/necry]}
The shock velocity is
A=c(b, +b_ )/ 4wner? 41
The energy is readily found to be
W (W_ _ b_(b, +b_ ))
&r
2(b—bg)) b_b, b?
—_ 42
X“"((b+ PPN R Ty (42)

The most interesting problem in the cylindrical case, as
in the slab case, is the penetration into 2 cold unmagnetized
plasma. The energy in the shock downstream is evenly divid-
ed between magnetic field energy and electron thermal ener-
gy similarly to the density gradient case. As we have shown
previously* one-quarter of the magnetic field energy flux
goes inmto heating. The radial Poynting flux is
(cb?, /24menr *). The radial flux of thermal energy is half of
that, i.e., (cb’, /48wenr?). When the dissipation is taken
into account, we get the equal deposition of energy into mag-
netic field energy and electron thermal energy. Thus, this
equal partition of energy occurs both for the slab density
gradient case and for the cylindrical case.

The shock solution dictates a specific relation between
the radial flows of magnetic field energy and thermal energy.
The question rises as to how various radial boundaries affect
the radial flow from the cathode. We have recently carried
out a two-dimensional analysis of a cold unmagnetized plas-
ma in a cylindrical geometry,* where the heating at the cath-
ode was shown to convert one-third of the incoming magnet-
ic field energy into thermal energy, the same relation that is
dictated by the shock solution given above. A two-dimen-
sional analysis that takes into account the radial boundary
conditions is necessary for the other cases as well,

We examine two additional cases. First we assume that
W_ =0and (b, —b_)/b_ <1.In this case the thermal
energy across the shock is

(b—b_)* 4b‘(b-b_))

P D A —b -
87 (b, +b_)(* T3 (b, +b.)
(43)

The ratio of thermal energy gain to magnetic field energy
gain is approximately }[ (b, —b_)/b_].
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As a last example we look at the shock wave that pene-

trates into a hot unmagnetized plasma. We assume b_ = 0.
The energy is

W=W_ exp(2b/b, )+ b?/8r. (44)
The energy downstream is

W, =W_ exp(2) + b2 /8. (45)

The ratio of the change in the magnetic field energy to the
change in the thermal energy is b2 /[87W _ exp(2)].

We derived the general Hugoniot relations for the
shocks. The penetration into a cold unmagnetized plasma
might be relevant for laboratory plasmas, as that in the POS,
and for other weakly nonuniform plasmas. The occurrence
of the other cases in less clear. A uniform pressure but a
nonuniform density imply a nonuniform temperature. The
penetration described here is of interest if it is faster than
processes of heat convection, which make the temperature
uniform.

V. THE FROZEN-IN LAW AND ELECTRON HEATING

The deviations from the frozen-in law and the electron
heating both result from the resistivity. A detailed discussion
of the deviations from the frozen-in law is given elsewhere.'°
Here we show an example where the deviation from the fro-
zen-in law is related to the rate of heating per electron in a
cylindrical geometry.

Combining Eq. (9) with the continuity equation,

dn

= = —nVwv.,, 46
dt Ve (4e)
we obtain (for a cylindrical geometry)
£ [ 22
dt\ nr? 4rnr? | 822 ar\r or
——c—ée'v (L)XVPe- (47)
enr n

Here d /dt=3 /3t + v.*V is the convective derivative along
an electron orbit, and b= — rB,. When the right-hand side
vanishes, b /nr ? is constant along an electron orbit. This is
the familiar frozen-in law in cylindrical geometry.

Let us look at the uniform density case, where b and p,
are functions mainly of z. Equation (47) is approximated as

i( b >= cn 8%
dt \ nr? dmrnr? 82

We look at the shock penetration into an unmagnetized plas-
]

(48)

ma. The deviation from the frozen-in law is found by inte-
grating along an electron orbit across the shock. Using
dr/dt= —j./enand A = cb , /4wner? [Eq. (41)], we ob-
tain

(49)

b]=87r = dt_,

nr? b, J_wn

Thus, the deviation from the frozen-in law is proportional to
the rate of heating per electron. The rate of heating per elec-
tron is thus

[
—w 8mn

As previously, the electron thermal energy in the shock
downstream equals the magnetic field energy.

(50)

VI. THE CASE OF NO PENETRATION

When the electrons accelerate as they move from a high-
density to a low-density plasma or from a large radius to a
small radius, the convective skin effect does not exist, and
the magnetic field does not penetrate into the plasma. More-
over, we have even shown that the magnetic field is expelled
from an initially magnetized plasma.>* Here we analyze the
steady skin layer. In the skin layer there is a balance between
the axial energy flow into the plasma due to the large skin
current and the energy that is convected radially. The den-
sity nonuniformity or the cylindrical geometry cause the
electrons to convect more energy out of the plasma than into
the plasma.

Let us start with the nonuniform density slab case. For
the steady state Egs. (15) and (16) become

w (B 2 10
e dx \87r 3 4 x>’
S 0B
3 e 41 Ix
The boundary conditions are
B(x=0)=B,, Bx=w)=8B
Equations (51) and (52) combine to
Se d Bl=q d’B i
6 ec dx ox*
With the second boundary condition we obtain

4B _ Sa (B*—B2%).

dx  Gecy
The magnetic field is therefore

(51)

(52)
(33)

o *

(54)

(35)

(56)

1 B, — B
B=B. ( + [(Bo w)/(Bo + B, )] exp(5B_, ax/3ecn) ); x50,

1—[(By —B,)/(By +B_)] exp(5B, ax/3ecn)

If the penetration is into an unmagnetized plasma, B_ =0,
the magnetic field profile becomes

B,

B = ; 0. 57
[1— (5aB,/6ecn)x] x> 7
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[
With Eqgs. (52) and (55) the energy at the steady state is
found to be

e=[(B*—B%)/87]. (58)

Let us examine the energy flow into a semi-infinite plas-
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ma slab located between the planesy =y, andy = y,. The x
component of the Poynting vector flux per unit length at the
plasma boundary is

V2 c
dy— BE,
» T
V2 2
- f dycn 6B* (o)
¥ 32772 ox
5 cBy

1 1

_ (32_31)( - ) (59)
9% % = ° n(y)  ny)

Note that n(y,) >n(y,) but the magnetic field is negative
and therefore the flux is positive. In the derivation we used
Eq. (55). Here there is no dependence on the resistivity. The
skin layer becomes narrow if the resistivity is small and the
flux remains finite. The flow into the slab in the p direction is
f dx <~ BE,

(1] 47

Y2

B4

=_F _l_y2 wﬂi(32+£(32_32))
Ae ninJdo 87 Odx 3
S5c(B} — B?
- _ c(B, °<>)( 1 _ 1 ) (60)
14477 n(y,) n(y)

The energy dissipation is

V2 *
f dyf dx E,j,
%7 o

5 ¢ 1
—_— = {1 BB _BS
96 17'28(3( ® o)

1 1
— B2 (B, —B )( - )
o) n(p)  n(y)

The sum of the energies in Egs. (57), (60), and (61) is of
course zero. When B, =0, one-third of the energy that
flows axially into the plasma is dissipated and two-thirds are
convected away out of the plasma. When B, =B _, most of
the energy that flows into the plasma is convected away and
the rate of dissipation is small.

In the flow of electron thermal energy there is a balance
between the dissipated magnetic field energy and the energy
that is convected out of the plasma.

We now turn to cylindrical geometry. Equations (36)
and (38) for the steady state become

(61)

b—b ( 14+ [(by —b,)/(by +b,)] exp(2b_z/ecnynr?) ) . 250
"\ 11— [(bo —b,)/(by +b.)] exp(2b, z/ecynr?) )

If b = 0, the magnetic field profile is

b=1b,/(1 — 2byz/ecynr?); z>0. (66)
The electron thermal energy is
W=[(b*>—b2%)/87]. (67)

We look now at the energy flow into a semi-infinite plas-
ma slab located for z>0 between r=r, and r=r, >7,. The
magnetic field energy fiow into the plasma is

—ifzdrbE,= —ifzdrb[—”lﬁ
2 Jn 2 Jy, 47r Jz

_Li(l’“_")]
en dr\3 r?
2 _ 2
=_—_56b°(b° b%) (L_L) (68)

The radial flow in the plasma is

0 o 'B
if dzbEz=if dzb[” —ii(ﬂ/)].
2 Jo 2 Jb enc 3en dz \r?

(69)
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c db*  c*n 3%
=1 , 62
(41mer2) 8z 4w 87 (62)
and
2.,
W __ ¢n b ’ (63)
2rner®  (4m)? 9z
with the boundary conditions
b(z=0)=by, blz=cw)=b_. (64)
The magnetic field is
; (65)
i
The net radial energy flow out of the plasma is
5¢(b3 — b}
_3ebs 0)(L_L), (70)
T2men ry  r}
The rate of dissipation is
w0 ry
f dzf dr2nrE.j,
0 ry
5 ¢ ( 1 1 )
=y (2
3 327%en\ri r?
X[%(bi—bé)—bi(bm—bo)]. (71)

Again, the energy pumped into the plasma (69) is partially
convected radially (70) and partially dissipated (71). If
b,, =0 one-third is dissipated and two-thirds convected
away.

VIl. CONCLUSIONS

In this paper we have studied the simultaneous magnet-
ic field penetration and electron heating in plasmas, where
the time scale of the processes is so short that the ions are
immobile. The two opposite behaviors, the fast wave propa-
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gation due to the convective skin effect, and the small pene-
tration into a narrow skin layer, have been analyzed for the
two configurations: a plasma slab of a nonuniform density
and a cylindrical plasma of azimuthal symmetry. General
Hugoniot relations have been derived for the shock penetra-
tion into a warm magnetized plasma. The major novel re-
sults presented in this paper are that the energy in the down-
stream of the shock penetration into a cold unmagnetized
plasma is evenly divided between magnetic field energy and
electron thermal energy, the enhanced shock velocity due to
the combination of the convective skin effect and the pres-
sure gradient, the dependence of the shock velocity on the
electron thermal energy in the warm plasma case, and the
relation between the deviation from the frozen-in law to the
heating of an electron along its orbit.

The phenomena described here could be relevant to

i23 Phys. Fluids B, Vol. 4, No. 1, January 1892

plasmas in pulsed-power devices such as the POS, and also to
other nonuniform laboratory and space plasmas.
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